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An interior penalty discontinuous Galerkin method for solving two-dimensional magnetostatic field problems using the magnetic
vector potential A is presented. The use of the A-formulation in two dimensions results in a second-order elliptic boundary value
problem. Due to the method, the scheme is symmetric and the resulting mass-matrix is block-diagonal, whereas each block belongs
to one element of the triangulation. The applicability of the proposed method is demonstrated by solving a typical magnetostatic
field problem and the numerical results are compared with the solution obtained from the standard finite element analysis.
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I. MOTIVATION

D ISCONTINUOUS Galerkin (DG) methods offer a new
perspective to simulate complex and large electromag-

netic field problems. Because of their local formulation, their
ability to handle non-matching meshes (e.g. hanging nodes)
and the use of discontinuous shape functions with varying
polynomial degree, DG methods are predestined for calculating
electromagnetic phenomena. If the magnetic vector potential
A is used to describe the magnetic field quantities in a two-
dimensional region, the resulting problem is elliptic and of
second order. There exist several DG formulations for second-
order elliptic problems, see [1]. The method used here is
derived from the interior penalty methods described in [2]. One
motivation to use DG methods is the fact that all elements of
the triangulation are decoupled and the resulting mass-matrix
is block-diagonal, which is easier to invert than the common
finite element mass-matrix. Information exchange between two
neighbouring elements is guaranteed by the so-called numerical
flux. Choosing the numerical flux appropriately leads to a
stable numerical scheme and the decoupled elements make the
method suitable for local refinement strategies without looking
for neighbouring elements. In order to show the applicability of
the DG method, a C-shaped magnet with linear ferromagnetic
material is computed.

II. FORMULATION

A. Boundary Value Problem (BVP) and A-formulation

The differential equations for stationary fields can be derived
from Maxwell’s equations by assuming time-independence
(∂/∂t = 0) of the field quantities. Due to this, the magne-
tostatic field is described by (e.g. [3]):

(1)∇×H = si
∇ ·B = 0

In (1), B is the magnetic flux density, H = νB is the magnetic
field strength, ν is the reluctivity and si is the imposed current
density. Consider a two-dimensional region Ω in the x-y plane
with boundary ∂Ω = ΓB ∪ ΓH , divided into two parts in
accordance with the two types of boundary conditions [4].

The imposed current density si = s(x, y)ez is oriented in z
direction, which yields for the magnetic vector potential:

(2)A = A(x, y)ez

Using A(x, y) = A and include B = ∇×A = (∂A/∂y)ex−
(∂A/∂x)ey into (1), the two-dimensional magnetic field is
described by the magnetic vector potential as follows:

(3)−∇ · (ν (|∇A|)∇A) = s, in Ω

(4)A = gD, on ΓB
(5)ν (|∇A|)∇A · n = gN , on ΓH

The reluctivity ν describes the constitutive relation between B
and H . In general ν is inhomogeneous, anisotropic, and non-
linear − depending on the field quantities. If a homogeneous,
isotropic, and non-linear behaviour is assumed the reluctivity
is a function of |∇A|. If the reluctivity is considered to be
constant, (3) becomes a linear problem. Furthermore the BVP
is defined by the inhomogeneous Dirichlet- and Neumann-
boundary conditions (4) and (5) (e.g. [4]).

B. Symmetric Interior Penalty Galerkin (SIPG) Formulation

The region Ω is decomposed into k = 1, ...,K elements,
naming one single element as Dk. Using a DG method for
spatial discretisation means to search for a solution that is
continuous inside one element and discontinuous across the
element interfaces. Consequently the usual way to perform the
variational formulation could not been followed. Integration
by parts of (3) has to be performed over each element Dk and
not on the whole domain Ω. Multiplying (3) by a test function
v, integrating over one element Dk and summing over all k
elements yields:

(6)

∑
k

∫
Dk

ν∇A · ∇v dr

−
∑
k

∫
∂Dk

ν∇A · v · n ds =
∑
k

∫
Dk

sv dr

In (6) the reluctivity is supposed to be homogeneous, isotropic,
and linear for each material. Fig. 1 shows two neighbouring



elements D+ and D− sharing one side e with the unit outward
normal vectors n+ and n−, respectively.

D− D+

e
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Fig. 1. Neighbouring elements D+ and D− sharing one common edge e.

By defining ε0 the set of internal edges, εD the set of
Dirichlet-boundary edges and εN the set of Neumann-boundary
edges, the second term in (6) can be reformulated as an integral
over internal and boundary edges. Note the average {{·}} and
jump [[·]] of a related function at any point p of e ∈ ε0 are
defined as:

(7){{u}} :=
(
u− + u+

)
/2, [[u]] := u−n− + u+n+

If p is a point of e ∈ εD ∪ εN the function is single valued,
{{u}} := u+ and [[u]] := u+n+. Furthermore the exact solu-
tion A in Ω is smooth on interior edges, [[A]] = 0, and satisfies
(4) on boundary edges, [[A − gD]] = 0. This fact leads to a
term that could be added to the formulation without destroying
consistency and making the problem symmetric:

(8)−
∫
ε0
{{ν∇v}} [[A]] ds−

∫
εD
{{ν∇v}} [[A− gD]] ds

To penalize the discontinuity of the solution the penalty term

(9)
∫
ε0
σ [[A]] [[v]] ds+

∫
εD
σ [[A− gD]] [[v]] ds

with the penalty parameter σ is added to the form. The
parameter σ is a real non-negative number and calculated by
the polynomial degree N of the shape function, the d and
(d− 1) dimensional Hausdorff measure on each element k:

(10)σ = N (N + 1) · |ek|d−1/|Dk|d

If the corresponding edge is an interior one, the average σ =
(σ+ + σ−)/2 is taken. The reformulation of (6) using (7) and
adding (8) and (9) results in the SIPG formulation of (3):

(11)
∑
k

∫
Dk

ν∇A∇vdr

−
∑
k

∫
ε0∪εD

({{ν∇A}} [[v]]+{{ν∇v}} [[A]]−σ [[A]] [[v]]) ds

=
∑
k

(∫
Dk

svdr +

∫
εN
gNvds+

∫
εD

(ν∇vgDn+σgDv) ds

)

The second term on the right hand side in (11) represents the
natural boundary condition (5).

III. NUMERICAL RESULTS

The SIPG is applied to a model problem, which consists
of the calculation of the magnetic field in a two dimensional
C-shaped ferromagnetic material (blue) with a coil (red) sur-
rounding one part of the magnetic yoke, as shown in Fig. 2.
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y

Fig. 2. C-shaped magnet (blue) and the surrounding coil (red).

The implementation is realised by using the open source
finite element software library deal.II, see [5]. Homogeneous
Dirichlet-boundary conditions (gD = 0) are assumed on the
whole domain and the reluctivity jumps from ν0 = 1/µ0

in air to ν = ν0/2000 in the ferromagnetic part. The
impressed current density |si| is zero outside the coil and
|si|= 263 · 103 A/m2 inside. Using a quadrilateral mesh and
Lagrange polynomials of second order as shape functions (see
[5]) yields the solution A from the SIPG as shown in Fig. 3.
Computing the solution A with continuous Lagrange elements
leads to a magnetic field strength |H|= 734 A/m in the air
gap of the magnet. The resulting field strength derived from A
calculated by the SIPG is |H|= 736 A/m.

Fig. 3. Numerical result for the magnetic vector potential A obtained from
the SIPG.

IV. CONCLUSION

The numerical results for linear ferromagnetic material indi-
cate that the introduced method yields equal results concerning
field strength and continuity of field quantities. A comprehen-
sive review of the numerical results will be developed in the full
paper. Furthermore the handling of non-linear ferromagnetic
material within the SIPG will be treated in the extended version
of the paper.
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